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1 Introduction 

Information about electrical loads in a building is of value to many individuals and 
organizations: facility managers would like to minimize operating costs and the costs and down-
time associated with repairs, electric utilities and service providers need accurate load models to 
most economically generate, transmit and distribute power, and energy service companies and 
building owners would like inexpensive means to verify savings from energy-efficiency 
improvements.   Electrical-power information can also be used for power-quality monitoring, 
load analysis, and fault detection and diagnosis. 

The current report presents the field-test results of the steady-state non-intrusive load monitoring 
(SS-NILM) system developed at M.I.T., and its suitability to load monitoring and fault detection 
and diagnosis in a small commercial building, specifically a KFC Restaurant in Norwell 
Massachusetts. The results from the NILM system were validated using an independent and 
“traditional” multi-channel end-use power-metering system installed at the site. 

The organization of this report is as follows:  

First a general description of the NILM system developed at M.I.T., hardware and software, is 
given in chapter two, followed by a description of the test sites selected for this project in chapter 
three. The site description includes the equipment connected to the electrical panel monitored by 
the NILM system as well the parallel power-metering system, installed to validate the results 
obtained from the NILM system. 

A discussion and comparison of the results obtained from the NILM and the parallel monitoring 
systems, as well as the modifications made to the NILM software components based on these 
results are presented in chapter four of the report. 

Conclusions and recommendations for possible future work are discussed and presented in the 
final chapter of the report. 

It should be noted that the proposed deliverable for this task was intended to focus on tests 
performed at the Iowa Energy Center’s Energy Resource Station, at Des Moines Area 
Community College in Ankany, Iowa.  This same test site has been used for complementary tests 
performed for the California Energy Commission under the prime contract held by Architectural 
Energy Corporation.  The emphasis of the AEC work has been on detection of on/off switching 
events and on detection of faults.  The emphasis of the LBNL work has been on estimation of 
energy consumption.  The Principal Investigator has elected to package all work at the Iowa test 
site in the reports prepared for AEC.  A copy of the final report will also be sent to LBNL.  This 
report includes work on estimation of energy consumption.   As noted above, the report for 
LBNL focuses on analysis of data from extensive tests performed at a fast-food restaurant in 
Massachusetts.  The analysis has concentrated on energy estimation and not fault detection and 
the site has a richer set of equipment than does the site in Iowa.  Code developed for the 
restaurant will be used in California buildings, as a means of not only detecting loads but also 
automatically classifying them and automatically estimating component-level energy 
consumption. 
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2 Non Intrusive Load Monitoring System 

Non-intrusive load monitoring (NILM) systems were, and are being, developed to simplify the 
monitoring of electric loads or appliances on a building electrical system or subsystem by 
providing system information based on electric measurements taken at a single point in the 
circuit, instead of measurements at each load of interest [1,2] (Figure 2-1). 
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Figure 2-1 Conventional vs. Non Intrusive Monitoring Systems. 

The single-point monitoring of the NILM system offers several advantages and disadvantages 
over traditional monitoring systems. Among the advantages are the reduced number of 
components in the monitoring system (lower equipment and installation costs), and the system 
flexibility and load monitoring capacity: the number of loads a NILM system could monitor is 
not limited by the physical constraints of the system (i.e. the number of available monitoring 
channels). Among the disadvantages is the increased complexity and computational cost of the 
system software and inaccuracies in resolving individual loads. 

2.1 NILM Hardware Description 

The current NILM hardware system developed at MIT, and the one used at the test site described 
later in this report, is based on a personal computer (200MHz Intel compatible processor with 
mmx, 64MB of RAM and 6GB Hard Drive) running Linux as the operating system. The 
computer contains an analog to digital converter (ADC) card for data collection, and an Ethernet 
network card for communications. Figure 2-2 depicts a block diagram of the hardware used in 
the NILM system deployed at the test site. 
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Figure 2-2 NILM System Hardware Block Diagram. 

The ADC card samples voltage and current signals at a sampling rate of approximately 8kHz. 
The digitized signals are then processed by the computer and stored on the internal hard drive. A 
Signal Conditioning box is used to interface the voltage and current sensor signals with the ADC 
card. Current sensors are closed coil current transducers installed around the monitored cables, 
while the voltage sensors are simple voltage taps connected to the monitored circuit. Although 
the ADC has multiple input channels for monitoring multiple circuits (i.e. three-phase circuits), 
the current hardware and software implementation of the NILM can only monitor a single circuit 
phase at any given time. This shortcoming is currently being addressed, and simultaneous 
monitoring of the three phases of a commercial electric installation should soon be possible. 

The NILM computer is accessible through the Internet. The current configuration allows for 
remote NILM software maintenance and system control. Also, the stored data in the hard drive 
are remotely retrieved and analyzed. 

2.2 General NILM Software Description 

The NILM approach is based on the idea that a power signal can be decomposed by recognizing 
the transients that occur when a given load is switched on or off. There are three key NILM 
tasks: detection, load classification, and estimation of energy consumption. 

NILM system can be divided in two main approaches: steady state and transient approaches. In 
the steady-state approach, load events are classified based on their steady state characteristics 
due to a state change (i.e. turn on or off). The transient approach relies on the shape and structure 
of the transitions between steady states to classify events. The NILM system used for this project 
is based on the steady state approach for detection and classification of events. 
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Figure 2-3 NILM Software Architecture Block Diagram. 
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The software used to implement the NILM reads the voltage and current used by the loads on the 
monitored circuit, and estimates the energy consumption of the individual loads based on the 
detected turn-on and turn-off events. Figure 2-3 shows a block diagram of the general NILM 
software architecture used. Four modules are used, which perform the main phases of the steady-
state NILM algorithm: spectral envelope preprocessor, edge (event) detection, event (load) 
classification, and energy consumption estimation. In addition a fifth module is provided to 
generate reports with the information generated from the NILM main modules. 

Spectral Envelope Preprocessor computes the real and reactive power used by the loads from the 
sampled voltage and current waveforms. Power is the mean of the instantaneous power sampled 
by the ADC card. The algorithm uses the spectral envelope estimator developed by Leeb et al. in 
[3,4]. Spectral envelopes are the short-time averages corresponding to the time-local content of a 
waveform. 

Edge Detection identifies changes in steady-state power levels. If a detected change is above a 
previously defined threshold, an event is defined. The associated real and reactive power changes 
together with the time of occurrence are stored. The power change detection is performed using 
the generalized likelihood ratio (GLR) algorithm developed by Luo et al. [17]. The GLR is a 
statistical algorithm used to detect changes in mean values in a data series. 

Load Classification is made by associating the change of real and reactive power during an event 
to the turn on or off of a load. A database containing change of power information for the loads 
present on the monitored circuit, and a history of load states are used to match the recorded 
events to the loads. 

Energy Consumption is estimated using the information obtained from the load-classification 
module on the loads turn on and off times, and the load average power consumption from the 
load database. 

In the current NILM implementation, the first software module (spectral envelope preprocessor) 
is running in the Linux box at the monitored site. The remaining modules are implemented 
offline. The real and reactive power data series for a given period of time are downloaded 
through the internet and analyzed off line using the programs developed in Matlab® . 
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3 Test Buildings 

3.1 KFC Restaurant  

The KFC restaurant in Norwell Massachusetts (11 Washington St, Norwell MA 02061) was 
chosen as one of the test sites for the MIT-developed NILM system. This location was chosen 
because of its proximity to MIT and because it was already instrumented because it included an 
automation system of interest in another research project. 

The building electrical system is a commercial three-phase 208/230volts system. It contains a 
main distribution panel (MDP) rated at 800 amps, and four distribution panels connected to the 
main panel, each rated at 225 amps. (Figure 3-1) 
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Figure 3-1 Building Electrical Distribution System. 

The electrical loads in the building are distributed among these four panels according to their 
type. The four types of loads in the building are mechanical equipment, building lights, cooking 
equipment, and miscellaneous office and point-of-sale equipment. 

Only one phase (phase A) of the mechanical equipment panel was monitored, using both the 
NILM system described previously and a commercially available (Synergistic C180) power 
metering and logging system. 

3.1.1 Mechanical Equipment Description 

As mentioned previously, most of the mechanical equipment in the building is connected to a 
single electric distribution panel (PA Panel). The equipment connected to this panel includes two 
rooftop HVAC units, two exhaust fans, one make-up fan, two walk-in refrigeration units (a 
cooler and a freezer), and an ice-making machine. In addition to the mechanical equipment, the 
PA panel also serves an electric convection oven, freezer and cooler accessories, and two water 
heaters. Table 1 summarizes the equipment connected to the PA panel. 
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Table 1 Equipment connected to PA panel. 

Equipment Voltage 
(V) 

Max. 
Current (A) Phases 

Max. 
Power 
(kW) 

Comments 

Kitchen HVAC 208/230 47.3 3 10.8 Two stage roof-top unit. 10-ton capacity. 
Gas fired heating.  

Lobby HVAC 203/230 34.5 3 7.9 Two stage roof-top unit. 7-1/2 ton 
capacity. Gas fired heating. 

Exhaust Hoods 208/230 10 3 2.1 Two fans. 18” impellers, 1hp motors. 
Make-up Fan 208/230 5 3 1.2 15”impeller, 1.5hp motor. 
Walk-in Cooler 208/230 

230 
8.8 
8.9 

3 
1 --- 

Compressor in 3-phase. Fans in 1-phase. 
Temperature set point: 36°F. Coil 
defroster is disabled. 

Walk-in 
Freezer 

208/230 
230 

7.9 
10.9 

3 
1 --- 

Compressor in 3-phase. Fans in 1-phase. 
Temperature set point: 10°F. Coil 
defroster on timer. 

Ice Machine 208/230 7.5 1 (A-
B) 1.7 Uses 6.8kWh per 100lb of ice produced. 

Capacity: 600lb every 24 hours. 
Convection 
Oven 208/230 21 3 5.6 Thermostat controlled. Turned on and off 

manually by restaurant staff. 

Water Heaters 208/230 29 1 (B-
C)  Thermostat controlled 

Accessories 120 --- 1 (A-
N) 0.6 (Always On) 

 

Since only one phase (phase A) of the circuit was monitored by the NILM system, the equipment 
not connected to this phase (the water heaters) was ignored1. 

3.1.2 Power Sub-metering System 

In order to validate the results obtained from the NILM system installed at the test site, a 
commercially available power metering and logging system was installed at the site to provide 
sub-metered data (Figure 3-2).  

                                                 
1 One of the water heaters was originally connected across phases A and B, and introduced high levels of noise into 
the monitored power signal. In order to clean the monitored signal, it was reconnected across phases B and C. 
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Figure 3-2 C180 System Connection to Electrical Panel. 

The system selected is a Synergistic® sixteen-channel power meter and logger model C180. The 
C180 logger collects and stores one-minute averages of the real and apparent power measured on 
each of the sixteen channels. The C180 data is retrieved using a modem connection and 
Synergistic’s® software running on a personal computer.  

Current is measured by the C180 using one split-core current transducer per channel. The 
transducers are installed around the cable (conductor) leaving each monitored circuit breaker. 
Three voltage measurements are taken, one for each of the circuit phases using potential-tap 
breakers (PT-Breaker) connected to the conductors feeding the PA electrical distribution panel. 
Table 2 shows the sub-metered equipment and the corresponding C180 channel assignments.  

Table 2 Sub-metered Equipment using C180 logger. 
C180 Channel Monitored Equipment Comments 

0 PA Electrical Panel (A) 
1 Not connected (B) 
2 PA Electrical Panel (C) 

Total power used by PA distribution panel. 
Phase A monitored by NILM system.  Phase 
B sensor did not fit inside panel. 

3 Exhaust Hoods 
4 Kitchen HVAC 
5 Walk-in Freezer 
6 Walk-in Cooler 

3 phase loads. Only phase A is monitored. 

7 Freezer Accessories 1 phase loads connected line A-to-N. 
8 Lobby HVAC 
9 Make-Up Fan 3 phase loads. Only line A is monitored. 

10 Ice Making Machine 1 phase load connected line-to-line (A-B). 
11 Convection Oven 3 phase load. Only line A monitored. 
12 Water Heater  
13 Not Connected 
14 Water Heater 

One phase loads connected line-to-line (B-C). 
They do not show in data collected by NILM 
system. 

15 Kitchen HVAC Phase C 
*Equipment in italics is not monitored by the NILM system. 
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4 NILM System Results and Sub-metering Data 

The following sections present the results obtained from the different NILM system modules and 
their comparison with the data obtained from the C180 system. 

4.1 Performance of Event Detection Module 

Event detection module performance was evaluated by making visual comparison of the real 
power data obtained from the spectral envelope power estimator and the events detected by the 
detection module. 

The event detection module successfully detected 97.4% of 5420 events over a test period of 7 
days.  This detection rate was measured as the number of events reported versus the number of 
actual events observed on the data sequence. Actual event counting on the data sequence was 
done visually and with the aid of the sub-metered power data obtained from the C180 system. 
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Figure 4-1 Power data compared to event detection output. 

The detection module ignored events that presented a steady state change below the detection 
threshold (Figure 4-1). For the current test site, the detection threshold was set at 200 Watts. This 
threshold was selected by trial and error using the data collected while generating the initial 
system load database during the initial training period (§4.2.2).  
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Event detection errors are classified into two main classes: missed event errors and false alarms 
errors. The first ones occur when the detection module does not report an event, while the second 
ones occur when an event is reported where there is none. 

The overlapping of events causes most of the missed event detection errors. These errors 
manifest themselves as the total omission of an event by the detection algorithm, or by the 
assimilation of two distinct events into a single event. Figure 4-2 and Figure 4-3 show examples 
of missed event errors, while Figure 4-4 shows an example of a false alarm error. The errors 
generated by the detection module are quantified by type on Table 3. 

Table 3 Detection Errors by Type 
Missed Events  Detection False Alarms Separation Simultaneous 

Percentage  97.4 % 0.25 % 1.85 % 0.74 % 
 

Figure 4-2 shows an example in which two events are assimilated into a single one because they 
occur almost simultaneously. On this example, a cooler shutdown and an oven shutdown occur 
simultaneously and are reported as a single event. 

An example of failure of detection is shown in Figure 4-3. In this example, a turn-on event for 
the convection oven occurs within a second of a shutdown event for the walk-in freezer. Since 
the shutdown event is not completely abrupt, as the oven transitions are, the detection algorithm 
ignores the freezer shutdown event. 
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Figure 4-2 Example of Detection Error because of Simultaneous Events. 
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Figure 4-3 Example of Detection Error because of Event Separation. 
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Figure 4-4 Example of False Alarm Detection Error. 

Figure 4-4 shows an example of a false alarm detection error. In this particular example, an event 
is reported due to the turn-on of one of the walk-in freezer subcomponents. Luo [18] explains in 
more detail causes for false alarm detection errors while using the generalized likelihood 
algorithm for event detection. 
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4.2 Performance of Event Classification Module 

4.2.1 Event Classification and Load Database 

Event classification is based on the assumption that it is possible to identify each load2 (or groups 
of loads) in the monitored circuit based on the changes of steady state power consumption due to 
that load‘s turn-on or shutdown events  [1]. An event is classified as one of the known load 
events3 in the building or circuit monitored, by comparing its power change in the complex 
power space (real and reactive power) to the power change of the known events. 
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Figure 4-5 Ellipse Definition based on Event Parameters. 

A database contains information about the loads in the monitored circuit or building in the form 
of event classes that represent the loads turn-on and shutdown events. An event class can 
represent a single load, or multiple loads that change state simultaneously. Each event class 
defines an area in the complex power space (P-Q plane) for each of the load events. These areas 
are defined using ellipses created from statistical parameters of the turn-on and shutdown events 
(Figure 4-5). 

Database File Format Description   

The load-database file contains the information needed to construct the ellipses that describe the 
clusters for each of the known load events in the monitored site. The file is in ASCII format. 
Each event class occupies two lines: the first line contains the turn-on event information, while 
the second line contains the shutdown event information:  

                                                 
2 The term load refers to an electric load in the general sense, and not a particular machine or appliance. A machine 
or appliance in the circuit may contain multiple loads and operational states.  
3 An event is the change in steady state power consumption due to the turn-on or shutdown of a load or multiple 
loads simultaneously. 
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ith_event_on    µP  µQ  σP  σQ  θ   Avrg_Power  Slaves  Master 
ith_event_off   µP  µQ  σP  σQ  θ  Base_Power Slaves  Master 

Here, µP and µQ are the mean real and reactive power change, respectively, due to the load event, 
σP and σQ are the standard deviations, and θ is the rotation of the cluster from the horizontal axis.  

When the event is due to the state change of a single load Avrg_Power is the average power 
consumption of the load due to the event turn-on. The Base_Power value is used to account for 
the power consumption of loads that do not completely shutdown after the turn-off event (for 
example, the cooler power consumption was found to never be zero). 

When a given event is caused by the simultaneous state change of multiple loads, the Slaves 
value indicates how many loads are involved in the state change. Similarly, the Master value 
indicates if a load event is related to another event in the database. 

4.2.2 Initial Load Database Generation 

Database generation for load classification is done during a training period of the NILM system 
at the target site. In general, the generation of the initial database can be done either 
automatically or with an operator intervention [1,6,9,10] using a priori information about the 
loads in the system, or by the analysis of collected data from the site during the training period.  

The current NILM implementation needs an operator intervention in order to create the initial 
load database, and to update it as additional information about the site events is collected. Given 
that the loads monitored during this project were known, and that some of them were manually 
controllable, the initial load database used for the load classification module of the NILM 
program was easily compiled from tests performed at the site.  

Table 4 Event Schedule for Initial Database Generation. 
Load Tested Events Performed 

Exhaust Hood Fans #1 & #2  4  On-Off cycles 
Exhaust Hood Fan #2 5 On-Off cycles 
Exhaust Hood Fan #1 1 On-Off cycle 
Make-Up Fan 5 On-Off cycles 
Make-Up and Exhaust Fans 2 On-Off cycles 
Lobby HVAC  (Heating Mode) 5 On-Off cycles 
Kitchen HVAC (Heating Mode) 6 On-Off cycles 
Cooler Evaporator 1 On-Off cycle 
Cooler Evaporator and Condenser 3 On-Off cycles 
Cooler Evaporator 6 On-Off cycles 
Cooler Evaporator Turn On 
Cooler Condenser 5 On-Off cycles 
Cooler Evaporator Turn Off 
Freezer Evaporator Turn On 
Freezer Condenser 1 On-Off cycle 
Freezer Evaporator Turn Off 

Repeated 5 
times 
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A series of tests was performed, in which the different controllable loads in the monitored circuit 
were individually turned on and off a given number of times at known intervals while power data 
were being recorded by the NILM system. The power data obtained were then analyzed using the 
GLR program to obtain the events information. The resulting events’ real and reactive power 
changes were clustered in the complex power space, and the means and standard deviations in 
the real and reactive domains computed for each of the clusters. Table 4 presents the sequence of 
events generated for the tests. These tests were performed during the fall. The HVAC units were 
operating in heating mode and therefore cooling mode data were not obtained. 
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Figure 4-6 Database Generation Test Power Waveforms. 

Figure 4-6 (a) and (b) show the real reactive power waveforms obtained while performing the 
tests described in Table 4. In order to simplify the analysis of the cluster data, the events were 
divided into six groups: exhaust hood fans, make-up fan, lobby HVAC, kitchen HVAC, walk-in 
cooler, and walk-in freezer. 

Fan Units 

Figure 4-7 and Figure 4-8 show sample power waveforms and the test cluster plots, respectively, 
for the exhaust hood fans, while Figure 4-9 shows the waveforms for the make-up fan. 

Figure 4-10 shows the cluster plots of changes in steady-state power due to the turn-on and 
shutdown of the make-up and exhaust hood fans. Clusters in the right-hand side of the complex 
power plane correspond to turn-on events, while clusters in the left-hand side correspond to 
shutdown events. 

The exhaust fans and the make-up fan have the same scheduled turn-on and shutdown times, 
sometimes causing the fans to switch states (almost) simultaneously. In order to better simulate 
their actual operation, the exhaust and make-up fans were turned on and off individually and 
simultaneously during the load-database generation tests (Table 4). 
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a) Power Waveforms when both Hood Fans turn-on/shut-down together. 
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b) Fan No. 1 Power Waveforms 

 - 16 - 



 

560 565 570 575 580 585 590
0

500

1000

1500

2000

2500

R
ea

l P
ow

er
 (W

)

Exhaust Hood Fan No 2

560 565 570 575 580 585 590
-2000

-1500

-1000

-500

0

R
ea

ct
iv

e 
P

ow
er

 (V
ar

)

Time (s)
 

c) Fan No. 2 Power Waveforms 

Figure 4-7 Exhaust Hood Fans Power Waveforms. 
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Figure 4-8 Exhaust Hood Fans Clusters in Complex Power Space. 
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Figure 4-9 Make-Up Fan Power Waveforms. 
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Figure 4-10 Make-Up Fan and Exhaust Hood Fans Clusters in Complex Power Space. 

HVAC Units (Heating Mode) 

Figure 4-11 shows the power waveforms characteristic of the lobby HVAC (LRTU) unit, and 
Figure 4-12 shows the kitchen HVAC (KRTU) power waveforms. Both units’ waveforms were 
obtained during heating mode operation. 

Electric consumption of the HVAC units during normal heating mode operation is due to the 
fans and control electronics of the units. Natural gas is used to provide heat in both HVAC units. 

Two waveform plots are presented for the kitchen HVAC: the first plot (a) shows the power 
waveform during normal heating mode operation, while the second plot (b) shows a surge in the 
kitchen HVAC unit power consumption that lasts approximately 19 seconds, and is almost 
certainly due to abnormal operation of the unit compressor. 

Figure 4-13 shows the HVAC units’ steady-state power-change cluster plots in the complex 
power plane together with the make-up and exhaust hood fans. The points due to the kitchen 
HVAC power surge, and those corresponding to the simultaneous turn-on and shutdown of the 
make-up and exhaust hood fans, are not shown on the plot. 
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Figure 4-11 Lobby HVAC Unit Power Waveforms. 
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a) Normal Heating Operation 
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b) Power waveforms due to HVAC unit compressor 

Figure 4-12 Kitchen HVAC Unit Power Waveforms. 
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Figure 4-13 HVAC Units and Fans Clusters in Complex Power Space. 

Walk-in Cooler 

The walk-in cooler is composed of two separate units: The evaporator inside the refrigeration 
compartment, and the condenser outside. The evaporator contains the evaporator coil and fans, 
while the condenser contains the compressor, the condenser coil and fans. 
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a) Cooler Evaporator Unit 

2800 2820 2840 2860 2880 2900 2920
0

1000

2000

3000

R
ea

l P
ow

er
 (W

)

Cooler Condenser

2800 2820 2840 2860 2880 2900 2920

-2000

-1500

-1000

-500

0

R
ea

ct
iv

e 
P

ow
er

 (V
ar

)

Time (s)
 

b) Cooler Condenser Unit 
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c) Cooler Condenser and Evaporator operating together 

Figure 4-14 Walk-in Cooler Power Waveforms. 

Three sets of tests were performed: the evaporator was turned on and off alone, the condenser 
was operated alone, and finally the condenser and evaporator were turned-on and off together. 
Figure 4-14 (a) to (c) show the power waveforms obtained during the three tests described.  

Walk-in Freezer 

Tests similar to the ones performed on the walk-in cooler were performed to the walk-in freezer. 
Figure 4-15 shows sample real and reactive power waveforms of the tests performed. 

Although the freezer and cooler units are similar, the behavior shown by the walk-in freezer 
during the tests was different from the one shown by the cooler. The cooler condenser presented 
a sharp shutdown waveform, while the freezer condenser presented a shutdown waveform that 
was identified as two events, instead of a single event, by the GLR program. The GLR program 
also detected an additional turn-on event during the freezer operation. 

These additional events on the freezer were treated as additional loads on the circuit, and resulted 
from the non-simultaneous turn-on and shutdown of the compressor and fans in the freezer-
condenser. Figure 4-16 shows the refrigeration units’ power change cluster plots. It is interesting 
to note that the cooler condenser shutdown cluster overlaps the second shutdown cluster of the 
freezer condenser. 
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Figure 4-15 Walk-in Freezer Power Waveforms. 
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a) Turn-on Events Clusters 
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b) Shutdown Events Clusters 

Figure 4-16 Refrigeration Units Clusters in Complex Power Space. 

Initial Database Values 

It can be seen from the cluster plots that the loads surveyed in the restaurant have turn-on and 
shutdown events in the fourth and second quadrants, respectively, of the complex power change 
space.  

Table 5 contains the statistical data extracted from the power-change clusters obtained from the 
test data series. As mentioned previously, these results were obtained manually and with a 
relatively small sample. As the number of samples taken during the operation of the NILM 
increases, the database could (and would) be updated to reflect the new information. 

After the initial database was created, the load database was updated to include the loads that 
were not addressed during the manual test sequence (for example the convection oven) and that 
are being monitored by the NILM system (Table 1). The update was done using the load-event 
information obtained from the parallel metering (sub-metering), as well as data obtained from the 
NILM system during its normal operation. 
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Table 5 Initial Database Values. 
Mean Power Change Standard Dev. Load Event 
Real Reactive Real Reactive 

On 358.91 -352.91 3.0 2.0 Hood Fan No. 1± 

Off -359.27 351.94 3.0 2.0 
On 242.82 -317.38 5.1 6.04 Hood Fan No. 2 Off -245.86 315.48 4.974 4.49 
On 573.89 -642.58 4.98 3.62 Hood Fans 1 & 2 Off -562.42 639.6 8.22 4.43 
On 606.13 -1131.5 14.26 22.94 Make-up Fan Off -609.21 1132.4 3.04 3.48 
On 1200.3 -1764.0 3.33 8.33 Make-up & Hoods Off -1197.7 1770.0 2.08 6.56 
On 683.572 485.848 3.294 3.804 Lobby HVAC (Heat) Off 684.138 484.968 3.207 3.521 
On 380.325 384.818 6.774 2.452 Kitchen HVAC (Heat) Off -382.121 383.997 5.757 2.147 
On 341.879 -121.126 17.962 2.619 Cooler Evaporator Off -293.513 114.388 3.244 1.755 
On 854.308 401.887 27.949     3.031 Cooler Condenser Off 789.485 390.321 17.398 3.154 
On 1207.8 529.6 22.05 1.845 Cooler Cond. + Evap. Off 1205.2 535.9 23.99 3.147 
On 77.21 -308.48 2.22 1.22 Freezer Evaporator Off -76.72 304.55 1.82 2.49 

On 1 1066.0 -416.8 20.196 8.104 
On 2 182.49   -56.705 12.275 11.227 
Off 1 -382.659  57.245 51.518 4.102 Freezer Condenser 

Off 2 -746.549  378.99 59.873 3.90 
± Only one sample of Hood Fan No. 1 was taken. The standard deviation was chosen to define an area similar to Fan’s No. 2 

 

4.2.3 Database Update and Maintenance 

Figure 4-17 shows an example of the turn-on and shutdown clusters formed during the normal 
operation of the loads in the restaurant and the initial database load event areas. (Figure 4-17 
does not present the oven clusters since its database values were not obtained during the initial 
training period.) It can be seen from the figure that most of the clusters observed during the 
training period differ from the clusters observed during the normal operation of loads. 

The discrepancy between the database values and the actual operation clusters is mainly due to 
baseline power consumption of the loads that was assimilated into the power change values 
obtained when the loads were turn-on and off manually, resulting in event power change values 
that were higher than the actual values. Classification using the initial database values was 
unsuccessful. 

It was necessary to update the load database used to classify the events using data collected from 
the site during its normal operation. These data were compared to the sub-metering data 
collected using the C180 system in order to associate the clusters formed with the actual loads. 
Appendix B presents the process followed to obtain the new database from the recorded events 
and the C180 sub-metering data. 
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a) Cooler and Freezer Clusters 
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b) HVAC Units Clusters. 

Figure 4-17 Power Change Clusters obtained during Normal Operation and Initial Database 

 - 28 - 



 

Table 6 presents the updated database values obtained using data from multiple days of normal 
operation. Figure 4-18 shows the plots in the complex power space corresponding to the database 
values presented in Table 6. 

The following observations on the load database clusters are obtained from Figure 4-18, and 
Table 6: 

• All the clusters are located on the second and fourth quadrants of the complex power 
space, with the exception of the convection oven, whose clusters are located on the first 
and third quadrants. 

• The walk-in cooler and icemaker event clusters overlap significantly, both during 
shutdown and turn-on. Freezer cluster overlap with the cooler and icemaker is relatively 
small. 

• The fans and the rooftop air-conditioning unit also present some overlapping. The 
shutdown event cluster of one exhaust fan unit is totally enclosed by one of the shutdown 
event clusters of the kitchen roof top unit. 

• Overlap is small between event clusters of the kitchen and the lobby roof top units.   

Table 6 Current Database Values. 
Mean Power Change Standard Deviation Cluster  Average  Event Name Real Reactive Real Reactive Angle Power 

Ice_On 775.86 -424.36 45 15 0.197 675 
Ice_Off -725.86 384.61 30 10 0.526 0 
Cooler_On 718.2 -371.98 35 20 -0.05 1140 
Cooler_Off -742.81 378.59 25 20 0.351 284 
Freezer1_On 949.54 -389.54 25 25 0.203 949.54 
Freezer1_Off -568.26 352.51 55 20 0.138 0 
Freezer2_On 791.19 -146.26 30 10 0.399 791.19 
Freezer2_Off -766.32 58.182 15 25 -0.147 0 
LRTU1_On 1143 -852.52 45 40 0.078 1143 
LRTU1_Off -1165.5 847.87 50 40 0.039 0 
LRTU2_On 588.64 -427.73 7.5 10 -0.292 588.64 
LRTU2_Off -583.33 445.92 35 6 0.00 0 
KRTU1_On 1544.8 -856.75 100 45 -0.426 1544.8 
KRTU1_Off -1631.9 848.89 120 40 -0.107 0 
KRTU2_On 388.22 -412.45 35 15 0.074 388.22 
KRTU2_Off -393.11 388.45 50 25 0.537 0 
KRTUs_On 11262 -2544.5 150 65 0.249 11262 
KRTUs_Off -10439 1679.8 160 35 0.305 0 
Exh1_On 380.73 -362.07 20 6 0.092 380.73 
Exh1_Off -386.41 397.15 35 5 0.849 0 
Exh2_On 265.38 -284.79 15 8 0.278 265.38 
Exh2_Off -258.19 281.11 30 10 0.233 0 
Oven_On 1697 1019.1 29 15 0.142 1697 
Oven_Off -1676.3 -1000.3 29 15 0.201 0 
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a) Total Database Clusters 
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b) Shutdown Cluster Detail 
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c) Turn-On Clusters Detail 

Figure 4-18 Updated Database Cluster Plots. 

4.2.4 Event Classification Results 

The event classification module correctly classified 91.4% of detected events. Figure 4-19 shows 
the distribution of events by load observed on the monitored circuit. It can be seen that the 
majority of the events correspond to the oven turn-on and shutdown events. The events generated 
by the oven are sufficiently distinct from the events generated by the other loads on the circuit. 

The oven is the only load on the circuit that has its event clusters on the first and third quadrant 
of the complex power space, while all other loads have their event clusters in the second and 
fourth quadrants. When the oven events were removed from the classification set, the accuracy 
of the classification module dropped to 88.4% correct classification.  

The classification results presented previously take into account all correctly identified events, 
regardless of conflicts with the load states. A conflict is generated when a load event does not 
cause a change in the load state. For example, a shutdown event when the load is registered as 
being off. When events that generate conflicts were not considered as correctly classified events, 
the accuracy of the module dropped to 85.4%. 
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Event Class Occurrences 
No Identified 1.4 % 
Icemaker 1.1% 
Cooler 8.7 % 
Freezer 6.7^% 
LRTU 13.4 % 
KRTU 7.7 % 
Exhaust Fans 0.6 % 
Oven 60.5 % 
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Figure 4-19 Load Events Distribution on Monitored Circuit. 

Figure 4-20 and Table 7 summarize the results obtained from the NILM classification module, 
both when all correctly classified events are considered, and when conflicting events are 
removed from the correctly classified events set.  
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Figure 4-20 Accuracy of Event Classification Module. 
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Table 7 Classification Module Results. 
 Load Classification Accuracy 
 

Classificati
on 

Accuracy 
Icemake

r 
Cooler Freezer LRTU KRTU Exhaust Oven 

All Events 91.4% 54.05 % 85.02 % 93.59 % 97.01 % 91.88 % 68.42 % 93.42 % 
No Conflicts 85.4% 35.14 % 73.29 % 83.33 % 93.18 % 81.92 % 36.84 % 88.95 % 

 

Most of the errors during the classification process can be attributed to the following causes: 

1) Events occurring simultaneously. An algorithm to deal with the power change detected 
when two or more events occur simultaneously has not been implemented yet, therefore 
events comprising multiple loads events are classified as “non identified”. One of the 
problems with composite events is that the registered power change values do not 
correspond to the addition of the individual events.  

2) Overlapping Load Clusters. The method used for classification is based on measuring the 
distance from an event point in the complex power space to the different cluster centers 
and choosing the cluster at the minimum distance from the point. Overlapping clusters 
increase classification errors because they increase the number of clusters that are at a 
minimum distance from a given event point. An additional dimension or parameter, such 
as transient behavior, harmonic content or actual building operation information, is 
needed in order to differentiate among members of distinct clusters. 

3) Steady-State Power Change Variations. The measure of the steady-state power changes 
of an event is affected by such factors as system noise and load conditions of the 
machine, for example temperature or pressure differentials. These variations in the 
measured steady state power change for a given event also contribute to the classification 
errors. 

4.3 Performance of Energy Estimation Module 

The performance of the Energy Estimation Module depends, mainly, on two factors: the results 
obtained from the event detection and event classification modules and their accuracy, and the 
average power consumption values contained in the load database. The number of events for 
each load during the reported period also has an effect on its energy-use estimation. 

The energy consumption values obtained from the NILM program were compared to the energy 
consumption values reported by the parallel metering system for seven days of measurements. 
The results are summarized in Table 8. 

Total energy consumption reported by the NILM system was in close agreement with the total 
energy consumption reported by the C180 system (<3% error) while the energy consumption 
estimation for the individual appliances was not. This is due to the fact that the total energy 
consumption is computed using the power data obtained from the power measurement module, 
while the energy consumption for the individual loads is based on the load-event information 
obtained from the event-classification module. 
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It is interesting to note that as the number of events for some of the devices increases, their 
energy estimation tends to improve.  For example, Table 8 shows that the energy estimation for 
the lobby roof top unit (LRTU) was within 12% of the C180 energy values on the days that the 
LRTU had a lot of activity, and had an error of 228% when the LRTU only had a single turn-on 
and a single shutdown during the day. 

Table 8 Energy Estimation Module Performance. 
Device Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Overall 

# Events  10 8 6 7 6 17 18 72 
C180 8.006 6.429 5.945 4.658 10.193 8.85 6.993 51.07 
NILM 6.407 2.802 10.816 2.529 6.247 10.193 11.41 50.40 Icemaker  

% Error -19.97% -56.42% 81.93% -45.71% -38.71% 15.18% 63.16% -1.31% 
# Events  67 62 74 43 61 96 111 514 

C180 16.227 14.352 12.078 7.781 12.271 18.66 22.823 104.19 
NILM 14.998 17.869 12.499 8.443 13.014 20.945 25.573 113.34 Cooler  

% Error -7.57% 24.51% 3.49% 8.51% 6.05% 12.25% 12.05% 8.78% 
# Events  53 42 58 35 46 46 56 336 

C180 13.372 15.736 14.101 9.254 14.072 23.00 23.741 113.28 
NILM 20.804 24.187 14.579 12.108 20.452 31.104 30.298 153.53 Freezer  

% Error 55.58% 53.70% 3.39% 30.84% 45.34% 35.23% 27.62% 35.53% 
# Events  2 29 176 95 167 131 209 809 

C180 9.198 7.214 12.099 5.822 10.347 6.57 11.708 62.96 
NILM 30.047 7.426 11.419 5.292 9.273 7.334 13.132 83.92 LRTU 

% Error 226.67% 2.94% -5.62% -9.10% -10.38% 11.63% 12.16% 33.29% 
# Events  (127) (122) 6 2 14 40 13 75 

C180 15.768 11.325 25.253 10.896 24.364 35.24 31.987 154.83 
NILM 33.067 18.297 28.283 21.904 36.579 45.79 39.524 223.44 KRTU 

% Error 109.71% 61.56% 12.00% 101.03% 50.14% 29.94% 23.56% 44.31% 
# Events  4 4 4 4 4 4 6 30 

C180 7.941 7.879 8.307 2.472 7.759 11.47 10.371 56.20 
NILM 10.570 12.856 9.881 6.161 15.293 19.151 22.781 96.69 

Exhaust 
Fans 

% Error 33.11% 63.17% 18.95% 149.23% 97.10% 66.97% 119.66% 72.05% 
# Events  507 451 529 121 518 590 505 3221 

C180 6.984 6.672 7.398 1.986 6.628 8.52 7.128 45.32 
NILM 7.427 6.873 6.527 1.896 6.490 9.3769 7.162 45.75 Oven 

% Error 6.34% 3.01% -11.77% -4.53% -2.08% 10.06% 0.48% 0.95% 
C180 91.402 83.356 98.668 50.742 98.914 128.69 134.45 686.22 
NILM 91.616 83.041 95.773 51.208 98.350 129.42 133.92 683.33 Total 

% Error 0.23% -0.38% -2.93% 0.92% -0.57% 0.57% -0.39% -0.42% 
 

4.3.1 Factors affecting Energy Estimation Results 

A given load power waveform is approximated using square waveforms to estimate its energy 
consumption. The square waveforms are defined using the time of the load events, obtained from 
the load classification module, and the average power consumption values contained in the load 
database. Figure 4-21 depicts the approximation performed graphically for an arbitrary load. 

The energy estimation results depend mainly on two factors: the Average Power Values 
contained in the load database, and the correct identification of the load events. 
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Figure 4-21 Power Waveform Approximation for Energy Estimation. 

Average Power Values 

The average power consumption values are obtained experimentally from the NILM system 
training data, and the training data obtained simultaneously by the parallel metering system.  

The initial database (Table 5) assumes zero stand-by or residual power consumption from the 
loads, that is, it considers only load power consumption during the periods between turn-on and 
shutdown events, and ignores any consumption by the loads that might exist after a detected 
shutdown event.  However, some of the appliances in the building, specifically the walk-in 
cooler and freezer and the lobby roof top unit, present a stand-by power consumption or “off 
state” consumption (Figure 4-22). 
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Figure 4-22 “Off State” Power Consumption as measured by C180 System. 

The average power values in the load database were therefore modified to take into account the 
“off state” consumption of the loads. The device power and energy consumption values obtained 
from the C180 system, together with the NILM energy estimates are used to compute the new 
average power values used in the database (Table 6). Table 9 presents, as an example, the 
changes made to the cooler database values. 

Table 9 Average Power Values Changes in Load Database. 
Event Name Initial Avg. Power Updated Avg. Power 

Cooler_On 718.2 1140 
Cooler_Off 0 284 

 

The energy estimates presented in Table 8 were computed using the average power values that 
take into account the “off state” consumption of the loads. 

Event Detection and Classification 

Figure 4-23 shows a simple example (only two events and a single load) to illustrate the 
dependence of the energy estimation on the correct identification of turn-on and shutdown 
events. The example makes the following assumptions: the initial state of the load is known (“off 
state”), the load has an idealized operation, and the average power consumptions are also known. 
The time units are irrelevant and the period considered is the length shown in the figure. 
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Figure 4-23 Effect of Event Detection/Classification on Energy Estimation. 

The first panel shows the case when both events are correctly identified. In this case the energy 
consumption estimation using equation gives the actual energy consumption of the load. The 
second panel shows that case when the shutdown event is missed, either by non-detection, or 
misclassification. The energy consumption estimation would be four times larger than the actual 
load consumption since the load shutdown was not registered.  

The third panel shows two cases that give the same results: both events are missed or the turn-on 
event is missed. The case where the two events are missed is trivial since no activity for the load 
would be registered and hence no energy consumption would be reported. When the turn-on 
event is missed, the energy estimation module discards the detected shutdown event because it 
would generate a conflict with the previous load state registered (The load is already off). 
Missing the turn-on event therefore results in zero energy-consumption estimation, as in the case 
of both events missed. 

4.3.2 Energy Estimation Improvements 

Energy estimation is highly dependent on the correct identification and classification of the load 
events. Missing load events have a considerable impact on the energy estimation, especially 
when the loads have low activity rates during the monitored period. Missed load events are 
caused by the non-detection of the events or their misclassification.  
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In order to improve energy estimation results, different methods were investigated in order to 
obtain better event detection and load classification. 

Improving Event Detection 

A multi-sampling rate GLR program was used to improve event detection. The use of the multi-
sampling rate GLR was expected to yield better energy estimation results by reducing the 
number of missed events. 

The detection of events by the GLR algorithm depends on the sampling rate of the analyzed data. 
A low sampling frequency (high sampling period) is prone to miss shortly spaced events, while a 
high sampling frequency might find these events, but at the expense of a higher computational 
cost and possibly more false alarms.  

Events were detected and the energy consumption estimated when the multi-sampling rate GLR 
algorithm used sampling periods of one second (1s GLR) and half a second (0.5s GLR)4.  Event 
detection improved when using the multi-sampling rate GLR instead of the single rate GLR 
program. 

Energy estimation, however, did not consistently improve with the better detection results. Table 
10 shows and compares the energy estimation results when using the single-sampling rate GLR 
(1s GLR) and the multi-sampling rate GLR (0.5s and 1s GLR) on seven days of data. The results 
in the table are shown as percentage errors of the NILM energy estimation relative to the energy 
values obtained from the C180 system. A negative error change (bold typeface) indicates an 
improvement on the energy estimation (for the particular device and day) achieved by using the 
multi-sampling rate GLR instead of the single-rate GLR.  

Table 10 Energy Estimation Errors using Multi-Sampling Rate Event Detection. 
Device  Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Week  

C180 kWh 8.006 6.429 5.945 4.658 10.193 8.85 6.993 51.07 
kWh  6.407 2.802 10.816 2.529 6.247 10.193 11.41 50.40 1s 

GLR % Error -19.97% -56.42% 81.93% -45.71% -38.71% 15.18% 63.16% -1.31% 
kWh 6.407 6.404 10.816 2.529 6.247 10.193 11.410 54.01 MSR 

GLR % Error -19.97% -0.39% 81.93% -45.71% -38.71% 15.18% 63.16% 5.76% Ic
em

ak
er

 

 Change 0.00% -56.03% 0.00% 0.00% 0.00% 0.00% 0.00% 4.45% 
C180 kWh 16.227 14.352 12.078 7.781 12.271 18.66 22.823 104.19 

kWh  14.998 17.869 12.499 8.443 13.014 20.945 25.573 113.34 1s 
GLR % Error -7.57% 24.51% 3.49% 8.51% 6.05% 12.25% 12.05% 8.78% 

kWh 14.998 17.937 12.204 8.443 13.094 21.172 25.292 113.14 MSR 
GLR % Error -7.57% 24.98% 1.04% 8.51% 6.71% 13.46% 10.82% 8.59% 

C
oo

le
r 

 Change 0.00% 0.47% -2.45% 0.00% 0.66% 1.21% -1.23% -0.19% 
C180 kWh 13.372 15.736 14.101 9.254 14.072 23.00 23.741 113.28 

kWh  20.804 24.187 14.579 12.108 20.452 31.104 30.298 153.53 

Fr
ee

z
er

 

1s 
GLR % Error 55.58% 53.70% 3.39% 30.84% 45.34% 35.23% 27.62% 35.53% 

                                                 
4 The notation 1s GLR refers to the GLR algorithm using a 1 second sampling period. Similarly 0.5s GLR is used 
when the GLR uses sampling period of half a second. 
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Table 10 Energy Estimation Errors using Multi-Sampling Rate Event Detection. 
Device  Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Week  

kWh 15.524 20.775 14.046 7.552 17.717 19.466 25.293 120.37 MSR 
GLR % Error 16.09% 32.02% -0.39% -18.39% 25.90% -15.37% 6.54% 6.26% 
 Change -39.49% -21.68% -3.00% -12.45% -19.44% -19.86% -21.08% -29.27%
C180 kWh 9.198 7.214 12.099 5.822 10.347 6.57 11.708 62.96 

kWh  30.047 7.426 11.419 5.292 9.273 7.334 13.132 83.92 1s 
GLR % Error 226.67% 2.94% -5.62% -9.10% -10.38% 11.63% 12.16% 33.29% 

kWh 30.047 6.974 11.134 5.098 8.474 6.879 13.132 81.74 MSR 
GLR % Error 226.67% -3.33% -7.98% -12.44% -18.10% 4.70% 12.16% 29.83% 

L
R

T
U

 

 Change 0.00% 0.39% 2.36% 3.34% 7.72% -6.93% 0.00% -3.46% 
C180 kWh 15.768 11.325 25.253 10.896 24.364 35.24 31.987 154.83 

kWh  33.067 18.297 28.283 21.904 36.579 45.79 39.524 223.44 1s 
GLR % Error 109.71% 61.56% 12.00% 101.03% 50.14% 29.94% 23.56% 44.31% 

kWh 32.439 17.889 25.475 21.904 36.563 45.790 39.524 219.58 MSR 
GLR % Error 105.73% 57.96% 0.88% 101.03% 50.07% 29.94% 23.56% 41.82% 

K
R

T
U

 

 Change -3.98% -3.60% -11.12% 0.00% -0.07% 0.00% 0.00% -2.49% 
C180 kWh 7.941 7.879 8.307 2.472 7.759 11.47 10.371 56.20 

kWh  10.570 12.856 9.881 6.161 15.293 19.151 22.781 96.69 1s 
GLR % Error 33.11% 63.17% 18.95% 149.23% 97.10% 66.97% 119.66% 72.05% 

kWh 13.223 12.856 15.508 9.161 15.293 19.151 22.781 107.97 MSR 
GLR % Error 66.52% 63.17% 86.69% 270.59% 97.10% 66.97% 119.66% 92.12% 

E
xh

au
st

 F
an

s 

 Change 33.41% 0.00% 67.74% 121.36% 0.00% 0.00% 0.00% 20.07% 
C180 kWh 6.984 6.672 7.398 1.986 6.628 8.52 7.128 45.32 

kWh  7.427 6.873 6.527 1.896 6.490 9.3769 7.162 45.75 1s 
GLR % Error 6.34% 3.01% -11.77% -4.53% -2.08% 10.06% 0.48% 0.95% 

kWh 7.310 6.782 6.623 1.896 6.565 9.300 7.067 45.54 MSR 
GLR % Error 4.67% 1.65% -10.48% -4.53% -0.95% 9.15% -0.86% 0.49% 

O
ve

n 

 Change -1.67% -1.36% -1.29% 0.00% -1.13% -0.91% 0.38% -0.46% 

 

 

Since the current event detection algorithm has a very good detection rate, it seems that the main 
cause for erroneous energy estimation is the misclassification of the detected events.   

Improving Event Classification 

Figure 4-24 shows an example depicting the qualitative effect of misclassification of events on 
the energy estimation. In the figure, the first and fourth rows represent the operation of the 
freezer coil defroster and icemaker, respectively, during an eight-hour period; the second and 
third rows represent the operation registered by the NILM system during the same period. 
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Figure 4-24 Effect of Misclassification on Energy Estimation. 

The NILM correctly classified three of the four defroster events and only one of the four 
icemaker events in the sample period. Misclassifying the first defroster shutdown as an icemaker 
event caused an overestimation of the defroster’s energy consumption, and an underestimation of 
the icemaker’s energy consumption. The energy underestimation of the icemaker was made 
worse by the classification of the last three icemaker events as freezer and cooler events. 

The misclassification of the icemaker, cooler and freezer events can be attributed primarily to the 
similarity of their steady state power consumption signatures. Figure 4-25 presents the power 
change database information corresponding to these loads. 

In order to better distinguish between events whose steady-state power change would fall into 
one of the areas defined by the loads shown in Figure 4-25, an additional “dimension” or 
characteristic is needed besides the steady-state complex power consumption (two dimensions). 

Table 11 presents the achievable energy estimation errors when all the events detected, when 
using the single-rate detection algorithm (1s GLR), are correctly classified, and compares them 
with the current steady-state NILM results. The energy values presented in the table were 
computed by feeding the energy estimation module with the correct classification of the single-
load events5, according to the information provided by the parallel metering system in the site. 

Table 11 Energy Estimation Errors with “Perfect” Classification of Detected Events. 
Device  Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Week  

                                                 
5 Events resulting from the simultaneous state change of two or more loads were not decomposed into their 
corresponding loads. The current NILM system implementation classifies these events as non-identified events. 
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Table 11 Energy Estimation Errors with “Perfect” Classification of Detected Events. 
Device  Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Week  

C180 kWh 8.006 6.429 5.945 4.658 10.193 8.85 6.993 51.07 
kWh  6.407 2.802 10.816 2.529 6.247 10.193 11.41 50.40 SS 

NILM  % Error -19.97% -56.42% 81.93% -45.71% -38.71% 15.18% 63.16% -1.31% 
kWh 7.929 6.359 6.583 4.700 10.141 8.846 6.867 51.43 Mod. 

NILM % Error -0.96% -1.09% 10.73% 0.90% -0.51% -0.05% -1.80% 0.70% Ic
em

ak
er

 

 Change -19.01% -55.33% -71.20% -44.81% -38.20% -15.13% -61.36% -0.61% 
C180 kWh 16.227 14.352 12.078 7.781 12.271 18.66 22.823 104.19 

kWh  14.998 17.869 12.499 8.443 13.014 20.945 25.573 113.34 SS 
NILM % Error -7.57% 24.51% 3.49% 8.51% 6.05% 12.25% 12.05% 8.78% 

kWh 16.327 14.780 12.161 7.626 12.155 19.777 21.326 104.15 Mod. 
NILM % Error 0.62% 2.98% 0.69% -1.99% -0.95% 5.99% -6.56% -0.04% C

oo
le

r 

 Change -6.95% -21.53% -2.80% -6.52% -5.10% -6.26% -5.49% -8.74% 
C180 kWh 13.372 15.736 14.101 9.254 14.072 23.00 23.741 113.28 

kWh  20.804 24.187 14.579 12.108 20.452 31.104 30.298 153.53 SS 
NILM % Error 55.58% 53.70% 3.39% 30.84% 45.34% 35.23% 27.62% 35.53% 

kWh 14.456 17.021 12.627 8.642 12.292 19.082 27.878 112.00 Mod. 
NILM % Error 8.11% 8.17% -10.45% -6.61% -12.65% -17.03% 17.43% -1.13% Fr

ee
ze

r 

 Change -47.47% -45.53% 7.06% -24.23% -32.69% -18.20% -10.19% -34.40% 
C180 kWh 9.198 7.214 12.099 5.822 10.347 6.57 11.708 62.96 

kWh  30.047 7.426 11.419 5.292 9.273 7.334 13.132 83.92 SS 
NILM % Error 226.67% 2.94% -5.62% -9.10% -10.38% 11.63% 12.16% 33.29% 

kWh 8.310 6.454 11.006 5.098 9.301 7.247 10.298 57.71 Mod. 
NILM % Error -9.65% -10.54% -9.03% -12.44% -10.11% 10.30% -12.04% -8.34% 

L
R

T
U

 

 Change -217.02% 7.60% 3.41% 3.34% -0.27% -1.33% -0.12% -24.95% 
C180 kWh 15.768 11.325 25.253 10.896 24.364 35.24 31.987 154.83 

kWh  33.067 18.297 28.283 21.904 36.579 45.79 39.524 223.44 SS 
NILM  % Error 109.71% 61.56% 12.00% 101.03% 50.14% 29.94% 23.56% 44.31% 

kWh 7.988 11.210 28.594 12.632 28.599 19.903 28.855 137.78 Mod. 
NILM % Error -49.34% -1.02% 13.23% 15.93% 17.38% -43.52% -9.79% -11.01% 

K
R

T
U

 

 Change -60.37% -60.54% 1.23% -85.10% -32.76% 13.58% -13.77% -33.30% 
C180 kWh 7.941 7.879 8.307 2.472 7.759 11.47 10.371 56.20 

kWh  10.570 12.856 9.881 6.161 15.293 19.151 22.781 96.69 SS 
NILM % Error 33.11% 63.17% 18.95% 149.23% 97.10% 66.97% 119.66% 72.05% 

kWh 9.047 9.049 9.047 2.7 8.833 13.335 6.93 58.94 Mod. 
NILM % Error 13.93% 14.85% 8.91% 9.22% 13.84% 16.26% -33.18% 4.88% 

E
xh

au
st

 F
an

s 

 Change -19.18% -48.32% -10.04% -140.01% -83.26% -50.71% -86.48% -67.17% 
C180 kWh 6.984 6.672 7.398 1.986 6.628 8.52 7.128 45.32 

kWh  7.427 6.527 1.896 6.490 9.3769 7.162 45.75 SS 
NILM % Error 6.34% 3.01% -11.77% -4.53% -2.08% 10.06% 0.48% 0.95% 

kWh 7.404 6.873 7.48 1.926 6.507 9.286 7.15 46.63 Mod. 
NILM % Error 6.01% 3.01% 1.11% -3.02% -1.83% 8.99% 0.31% 2.89% 

O
ve

n 

 Change -0.33% 0.00% -10.66% -1.51% -0.25% -1.07% -0.17% 1.94% 

6.873 
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Figure 4-25 Overlapping Load Database Clusters. 
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Figure 4-26 Cooler, Freezer and Icemaker Transient Signatures.  

The energy estimation errors obtained when using the “perfect” event classification are mainly 
due to missing load events due to the either non-detection (the fewer) and composite events that 
were not identified. Composite events are events resulting from the simultaneous, or almost 
simultaneous, state change of multiple loads, and algorithms to deal with them are being studied 
and developed.  Additionally, two methods to complement, or supplement, the steady-state 
classification process are being currently studied in order to achieve “perfect” classification of 
the detected events. The first method uses transient signatures during the classification process, 
while the second method uses building information in addition to the measured power. 

Using Transient Signatures 

Transient signatures are being investigated as a mean to distinguish between loads that have 
similar steady-state power change signatures. For example, the power waveforms generated by 
the cooler, freezer and icemaker operation present distinct transient shapes (Figure 4-26), and 
therefore their transient characteristics might be used as the additional “dimension” or 
characteristic needed to disaggregate these loads correctly.  

The turn-on and shutdown transient patterns information (also referred to as exemplars) for the 
loads in the monitored circuit are extracted from the data collected at the site and incorporated 
into the load database, and the NILM software modified to use the exemplars in the classification 
process. 

The steady-state NILM system with transient identification currently being developed differs 
from previously developed transient based NILM systems (Leeb and Shaw [3,4,12]), in that the 
transient identification process is a complement to the steady-state classification process. 
Transient signatures are used in the classification process only when the steady-state signatures 
are not sufficient to associate a particular event to a single load with enough certainty. When an 
event can be associated to various loads based on the steady-state signature alone, the exemplars 
for the possible loads are be retrieved from the load database and compared to the transient shape 
of the event. The event is associated to the load whose exemplar best matches the event transient. 

Using the transient classification process on a need basis only, and with a varying subset of the 
exemplar load database, would improve the classification process by using the positive attributes 
of transient classification while reducing the effect of its disadvantages, such as the increased 
computational cost and noise sensitivity.  

Using Building Information  

An alternative to transient identification for disaggregating loads with similar steady state 
characteristics would be to use building information. The building information could be obtained 
from a building energy management system (BEMS) or from the equipment controllers. It could 
also be obtained from equipment operation schedules, models, or system design intent. 

Having control signals, or similar information from the operation of the equipment is important 
for event classification, as well as for fault detection. For example, the presence of a control 
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signal from the BEMS (or its absence) could be used to verify the classification of a NILM 
observed event. It could also indicate the existence of a fault when the observed event does not 
correspond to the issued control signal. 

4.4 NILM Report Generation 

The current implementation of the NILM system distributes the software modules between the 
remote computer, installed at the monitored site, and a “central” computer, which processes the 
data obtained from the remote site offline. 

The block diagram of the current NILM software implementation is shown in Figure 4-27 (the 
figure is similar to the one presented in Figure 2-3). This diagram shows the current distribution 
of the modules among the remote and “central” computers, as well as the information shared 
between the modules. Since most of the NILM software resides currently in the “central” 
computer, all the information generated by the system is readily available and obtained by 
directly accessing the system variables shown in Figure 4-27. 
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Figure 4-27 Current NILM Software Architecture Block Diagram. 

However the intended role of the “central” computer is not the analysis of the NILM data, but 
rather the management of different monitoring computers and the site information obtained from 
them. Each of the remote computers would host the NILM software in its entirety and would 
provide the relevant site information to the “central” computer in the form of report files 
transmitted using the Internet or a modem connection.    

Two reports, in ASCII format, can then be generated for each site monitored by the central 
computer. The first report presents energy consumption information for the whole site and the 
individual loads identified in the site. This information includes: 

1) Total energy consumption in kWh. 
2) Average power consumption per hour in W. 

A sample of the energy-consumption report generated by the NILM software is presented in 
Figure 4-28. The sample report presented was obtained from 25 hours of data. Total energy 
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consumption values shown correspond to the energy consumed during the whole recorded 
period. Average power consumption values shown correspond only to the first three hours of the 
recorded period. 

In addition to the text file provided, average power use data can be plotted to show at a glance 
energy consumption trends, for the total building or individual loads. 

 DATA FROM FILE: t20001212 
2000.12.12 18:45 
2000.12.13 19:48 
 
* Total Energy Consumption (kWh) 
 
Total Ice Cooler Freez1 Freez2 LRTU1 LRTU2 KRTU1 KRTU2 KRTUs Exh1 Exh2 Oven 
95.773 10.816 4.767 11.991 1.679 11.134 0.000 23.932 4.350 0.000 9.139 0.742 6.527 
 
* Average Power Use per Hour (W) 
 
Hour Total Ice Cooler Freez1 Freez2 LRTU1 LRTU2 KRTU1 KRTU2 KRTUs Exh1 Exh2 Oven 
1 4266 0.0 0.0 509.9 0.0 524.8 0.0 1544.8 0.0 0.0 380.7 265.4 376.6
2 4137 0.0 281.3 102.1 163.1 550.2 0.0 1544.8 0.0 0.0 380.7 265.4 315.8
3 4630 0.0 342.7 640.7 256.3 744.2 0.0 590.5 0.0 0.0 380.7 211.3 303.6

 
Figure 4-28 Energy-Consumption Report Sample. 

Figure 4-29 shows sample average power consumption plots extracted from the report file. The 
average power use for the whole building and the cooler are presented in the plots. 
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Figure 4-29 Average Power Consumption Plots. 

The second report presents information on the operation of the different loads in the monitored 
site, such as the time of the events detected in hr:min:sec from the beginning of the reporting 
period and their classification. Figure 4-30 shows a sample of the event report for a period of 6 
hours. The figure presents the whole site event classification, and the time of the events that were 
associated to the cooler.  

 DATA FROM FILE: t20001212  
2000.12.12 22:45 
2000.12.13 04:48 
 
* Total Event List (* indicates conflict) 
 
 Time    Event Name     Time    Event Name     Time    Event Name     Time    Event Name  
00:00:21 LRTU1_Off     01:36:41 Freez1_Off    03:24:17 Cooler_On     04:23:40 non ident. 
00:05:47 Ice_On        01:40:22 LRTU1_Off     03:25:03 LRTU1_On      04:26:50 LRTU1_On    
00:09:07 Ice_On*       01:50:04 LRTU1_On      03:29:52 Cooler_Off    04:33:00 KRTU1_Off   
00:11:03 LRTU1_On      01:55:50 LRTU1_Off     03:31:05 LRTU1_Off     04:42:10 LRTU1_On*   
00:15:02 Cooler_Off*   02:02:38 Ice_On        03:35:11 Ice_On*       04:46:28 Ice_On*     
00:16:33 LRTU1_Off     02:04:59 Freez1_On     03:35:36 Freez1_Off    04:48:24 LRTU1_Off   
00:27:24 LRTU1_On      02:06:24 LRTU1_On      03:40:27 LRTU1_On      04:52:04 Cooler_Off* 
00:32:09 LRTU1_Off     02:08:24 Cooler_Off*   03:46:18 Freez2_On     04:57:18 LRTU1_On    
00:37:37 Freez1_Off*   02:12:10 LRTU1_Off     03:46:33 LRTU1_Off     05:03:32 LRTU1_Off   
00:43:28 LRTU1_On      02:22:20 LRTU1_On      03:47:49 Freez1_On     05:05:53 LRTU2_Off*  
00:45:34 Ice_On*       02:28:14 LRTU1_Off     03:48:06 Freez1_Off    05:12:30 LRTU1_On    
00:48:49 LRTU1_Off     02:36:17 Freez1_Off    03:56:07 LRTU1_On      05:18:43 LRTU1_Off   
00:51:22 Ice_Off       02:38:12 LRTU1_On      04:00:34 Ice_On*       05:27:46 LRTU1_On    
01:00:56 LRTU1_On      02:43:27 Cooler_On     04:02:08 LRTU1_Off     05:28:54 Cooler_On   
01:05:49 LRTU1_Off     02:44:05 LRTU1_Off     04:06:54 Cooler_Off*   05:32:18 Freez1_On*  
01:05:56 Freez1_On     02:49:02 Cooler_Off    04:09:03 Freez1_Off*   05:34:03 LRTU1_Off   
01:17:08 LRTU1_On      02:53:48 LRTU1_On      04:11:35 LRTU1_On      05:34:24 Cooler_Off  
01:22:17 LRTU1_Off     02:59:49 LRTU1_Off     04:17:36 LRTU1_Off     05:43:06 LRTU1_On    
01:22:39 LRTU1_Off*    03:06:14 Freez1_On     04:18:10 Freez2_Off    05:49:27 LRTU1_Off   
01:23:32 Cooler_On     03:09:32 LRTU1_On      04:18:14 Freez1_On     05:54:17 KRTU2_Off*  
01:29:23 Cooler_Off    03:15:33 LRTU1_Off     04:22:25 non ident.  05:58:21 LRTU1_On    
 
* Event List by Load (* means conflict) 
 
Events Registered for Cooler. 
 
 Time    Event    Time    Event    Time    Event    Time    Event    
00:15:02 Off*    02:08:24 Off*    03:24:17 On      04:52:04 Off*     
01:23:32 On      02:43:27 On      03:29:52 Off     05:28:54 On       
01:29:23 Off     02:49:02 Off     04:06:54 Off*    05:34:24 Off      
  

Figure 4-30 Event Report Sample. 
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Figure 4-31 Cooler Events Plot Sample. 

In addition to the information described, each report contains a header with general site and time 
information, such as site name, date, and start and end time of data reported. Figure 4-31 shows a 
plot extracted from the information contained in the event report. The bars represent the cooler 
events, turn-on and shutdown, with the thinner bars in the figure indicating events that caused a 
conflict with the previous load state. 
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5 Conclusions 

A steady-state Non Intrusive Load Monitor (NILM) system developed at MIT was installed at 
KFC Restaurant in Norwell, Massachusetts. The NILM system monitored one phase of the 
electrical panel servicing the mechanical equipment of the restaurant. The equipment monitored 
consisted of two multi-stage HVAC roof top units, two refrigeration units, three ventilation units 
(exhaust and make-up fans), an icemaker machine and a convection oven. 

In addition of the NILM system, a commercial sub-metering and logging system (Synergistic 
C180 system) was installed to compare and validate the results obtained from the NILM system. 

The NILM hardware installed at the site consists of a compact personal computer with a data 
acquisition (DAQ) board and a network interface card. Voltage and current measurements are 
taken via voltage taps and solid core current transducers and interfaced with the DAQ board 
through signal conditioning hardware. A DSL Internet connection was installed at the site to 
provide remote access to the computer. The computer runs Linux as operating system. 

The NILM software is divided into five modules, each performing a specific task of the steady 
state NILM algorithm. These tasks are power preprocessing, event detection, event classification, 
energy use estimation, and report generation. The first module resides in the on-site computer 
while the remaining modules are implemented using Matlab® in a remote and off-line computer. 

Reports generated by the NILM system provide information on the energy consumption and time 
of use activity of the different loads in the building. 

5.1 Power Measurement Module 

The power measurement module uses the current and voltage measurements to estimate the 
circuit power consumption. The algorithm used is known as the power spectral envelope 
processor and it estimates the fundamental and harmonic components of real and reactive power.  

This software module operates in the on-site computer. The resulting data (real and reactive 
power) are stored in the computer hard disk until its retrieval using the network connection. 

5.2 Event Detection Module 

Changes in steady-state power consumption above a specified threshold are defined as events. A 
positive change in steady state real power use is considered a turn-on event while a negative 
change in steady state real power use is considered a shutdown event. These events are generated 
by the turn-on and shutdown respectively of loads in the monitored circuit. 
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The Generalized Likelihood Ratio (GLR) algorithm is used to detect events using the power data 
generated by the power spectrum envelope module.  When an event is detected, the time of its 
occurrence, as well as its associated steady-state power change (real and reactive) are stored. 

The event detection module is implemented using Matlab® in an off-line computer. It achieved 
an event detection rate of 97.4%. 

Errors by the event detection algorithm can be classified as false alarm errors and missed event 
errors. The first type reports the occurrence of “non-existing” events, while the second type is the 
omission of events. Omitted events are the result of simultaneous events or closely spaced events 
(overlapping). Noise and load variations, other than “on” or “off” events, are the causes for false 
alarms. 

A multi-sampling rate GLR algorithm was tested on the collected data in order to obtain better 
detection rates with the goal of obtaining better energy estimates. The multi-sampling rate GLR 
did achieved a better detection rate than the single rate GLR, however at higher memory and 
computational expense. Furthermore, the difference in the energy estimation results between the 
two detection methods did not warrant the additional cost and complexity of the multi-sampling 
rate GLR. 

5.3 Event Classification Module 

Events are classified as belonging to a load class based on their steady state real and reactive 
power changes. A database containing information on the loads’ steady state real and reactive 
power change values was manually created using experimental data from the site, and is used by 
the event classification module. 

The load database information defines elliptical areas (or clusters) in the complex power space 
for each load event (turn-on and shutdown). The distances of an event in the complex power 
space from the elliptical areas are used to define its membership (or lack of it) to one of the load 
clusters. The load database also contains information on the average power consumption of the 
load during its “on” and “off” states. 

The event classification module had a correct classification rate of 91.4% from all detected 
events. However, when the oven events were removed from the selection set, the correct event 
classification rate was 88.4%. Loads generating a higher number of events during the recording 
period were identified correctly at higher rates than loads generating lower number of events. 

Loads presenting similar steady-state power change values were one of the principal causes for 
misclassification errors. The walk-in cooler and icemaker presented similar steady state 
signatures (their clusters overlap severely), and generated most of the classification errors. 
Overlapping and simultaneous events also generated classification errors, since there are 
assimilated into a single composite event. The composite signatures were not included in the 
load database used, as their inclusion in the database is impractical. Methods need to be 
developed to address the issue of composite events.  
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Other classification methods are needed to accurately disaggregate the loads that present similar 
steady state signatures. A possible method currently under investigation is the use of transient 
signatures in conjunction with steady state signatures for classification. Another method to 
improve classification involves using building information, such as equipment control signals 
and operation schedules, during the classification process. 

5.4 Energy Estimation Module 

The energy estimation module computes the total energy used by the monitored circuit as well as 
energy used by individual loads. Total energy is estimated using the data obtained from the 
power measurement module. Energy use by the different loads is estimated using the information 
on the load events from the event classification module and the load average power 
consumptions contained in the load database. The energy estimation is highly dependent on the 
correct detection and classification of the load events, as well as the power consumptions values 
contained in the load database. 

The energy consumption estimates for the loads were found to depend on their activity rates. 
Loads with few events during the day (or recording period) had large energy estimation errors 
when compared to the energy estimated reported by the parallel metering system. Similarly loads 
with a large number of events had lower energy estimation errors. Loads with high activity rates, 
such as the oven and cooler, had estimation errors under 25%, while loads with low activity 
rates, such as the icemaker and some ventilation units, presented errors over 19% and as high as 
250%. The dependence of the energy estimation on load activity is a result of its dependence on 
correct event identification. 

Energy estimation within 12% for most of the loads and days of the values reported by the 
parallel metering system were achieved when a “perfect” classification of the detected events 
(performed manually) was used for the Energy Estimation Module instead of the classification 
results obtained from the Event Classification Module. The main cause of error in the energy 
estimation with “perfect” classification resulted from missed load events due to the simultaneous 
state change of multiple loads, which generated composite events that were not classified. Better 
energy estimation would be achieved when algorithms to decompose composite events into their 
individual load events are developed and implemented. 
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Appendix A Report Generation 

A.1  Energy Report File Example 

DATA FROM FILE: t20001211 
START TIME & DATE 
END TIME & DATE 
 
* Total Energy Consumption (kWh) 
 
Total Ice Cooler Freez1 Freez2 LRTU1 LRTU2 KRTU1 KRTU2 KRTUs Exh1 Exh2 Oven 
83.04 2.802 9.273 13.032 10.332 1.709 5.267 10.060 5.265 2.972 9.139 3.717 6.873  
 
* Average Power Use per Hour (W) 
 
Hour Tota Ice Cooler Freez1 Freez2 LRTU1 LRTU2 KRTU1 KRTU2 KRTUs Exh1 Exh2
 Oven 
1 3461 0.0 596.7 245.0 0.0 0.0 588.6 1544.8 226.0 115.7 380.7 265.4
 45.3  
2 3556 0.0 301.0 319.9 0.0 0.0 588.6 1544.8 0.0 115.7 380.7 265.4
 547.3  
3 4383 616.4 99.2 949.5 0.0 0.0 588.6 1544.8 169.3 118.9 380.7 265.4
 368.6  
4 4113 563.1 353.5 949.5 747.7 0.0 588.6 1544.8 24.0 115.7 380.7 265.4
 191.4  
5 3230 0.0 434.3 744.9 791.2 0.0 240.9 541.5 169.0 115.7 380.7 15.6
 0.0  
6 2153 0.0 371.1 764.1 791.2 0.0 0.0 0.0 0.0 56.3 380.7 0.0
 0.0  
7 2296 456.7 155.8 489.3 791.2 0.0 0.0 0.0 0.0 112.6 380.7 0.0
 0.0  
8 1660 0.0 131.3 549.4 791.2 0.0 0.0 0.0 0.0 56.3 380.7 0.0
 0.0  
9 1686 0.0 100.7 949.5 791.2 0.0 0.0 0.0 0.0 112.6 380.7 0.0
 0.0  
10 2108 54.7 113.3 455.8 462.6 0.0 0.0 0.0 0.0 118.9 380.7 0.0
 0.0  
11 2325 775.9 134.1 949.5 0.0 0.0 0.0 0.0 0.0 56.3 380.7 0.0
 0.0  
12 1743 335.1 485.4 560.5 0.0 0.0 0.0 0.0 71.6 115.7 380.7 0.0
 0.0  
13 2069 0.0 324.4 624.3 0.0 0.0 0.0 0.0 332.7 112.6 380.7 0.0
 0.0  
14 2080 0.0 718.2 614.6 0.0 0.0 0.0 0.0 388.2 56.3 380.7 0.0
 0.0  
15 4019 0.0 718.2 761.2 0.0 0.0 380.0 0.0 388.2 112.6 380.7 250.0
 533.1  
16 4862 0.0 718.2 7.1 747.0 0.0 588.6 0.0 388.2 59.4 380.7 265.4
 593.5  
17 5022 0.0 529.3 0.0 791.2 0.0 588.6 1.7 388.2 115.7 380.7 265.4
 515.2  
18 6091 0.0 700.0 611.1 791.2 0.0 588.6 197.4 388.2 115.7 380.7 265.4
 665.1  
19 5695 0.0 718.2 485.8 791.2 0.0 525.2 310.2 388.2 1188.8 380.7 265.4
 746.7  
20 3684 0.0 718.2 393.3 791.2 0.0 0.0 0.0 388.2 0.0 380.7 265.4
 345.5  
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21 3430 0.0 341.9 475.3 791.2 0.0 0.0 19.7 388.2 0.0 380.7 265.4
 488.8  
22 3971 0.0 180.7 451.3 463.1 396.6 0.0 4.3 388.2 0.0 380.7 265.4
 692.0  
23 4488 0.0 181.3 366.9 0.0 769.3 0.0 1254.3 388.2 0.0 380.7 265.4
 474.2  
24 4895 0.0 144.2 314.1 0.0 543.2 0.0 1544.8 388.2 0.0 380.7 265.4
 660.4  
25 5123 0.0 718.2 0.0 0.0 0.0 0.0 1544.8 388.2 0.0 380.7 265.4
 1285.6  

 

A.2  Event Report File Example 

DATA FROM FILE: t20001213 
START TIME & DATE 
END TIME & DATE 
 
* Total Event List (* indicates conflict) 
 
 Time   Event Name     Time   Event Name     Time   Event Name     Time   Event 
Name     
00:00:34Oven_On       01:26:31Oven_Off      06:11:38LRTU1_Off     12:12:08
 Cooler_On      
00:01:19Oven_Off      01:28:45non identified  06:12:12Freezer1_Off  12:17:41
 Cooler_Off     
00:01:45Freezer1_Off*  01:29:24Oven_Off*     06:24:50LRTU1_On      12:21:43
 Exh1_On*       
00:04:10Oven_On       01:31:40Oven_On       06:27:35Cooler_On     12:21:46
 Exh2_On        
00:04:47Oven_Off      01:32:18Oven_Off      06:29:27LRTU1_Off     12:23:33
 Freezer1_On    
00:05:16Cooler_On     01:34:12LRTU1_On*     06:31:54Cooler_On*    12:25:21
 LRTU1_On       
00:06:29LRTU1_On      01:34:35Oven_On       06:33:12Freezer1_Off*  12:30:15
 LRTU1_Off      
00:07:41Oven_On       01:35:15Oven_Off      06:37:43Cooler_Off    12:44:30
 LRTU1_On       
00:08:18Oven_Off      01:35:37Cooler_Off*   06:42:18LRTU1_On      12:49:57
 Cooler_On      
00:11:04Cooler_Off    01:37:35Oven_On       06:46:55LRTU1_Off     12:50:11
 LRTU1_Off      
00:11:20Oven_On       01:38:14Oven_Off      06:52:56Freezer1_On   12:50:27
 Oven_On        
00:11:56Oven_Off      01:40:34Oven_On       06:59:46LRTU1_On      12:52:31
 Exh2_Off       
00:14:39LRTU1_Off     01:41:12Oven_Off      07:02:51Cooler_Off*   12:53:36Ice_On      
   
00:14:59Oven_On       01:42:00Cooler_On     07:04:16LRTU1_Off     12:57:23
 Oven_Off       
00:15:36Oven_Off      01:43:34Oven_On       07:10:05Cooler_On     12:57:46
 Oven_On        
00:18:43Oven_On       01:43:42LRTU1_Off     07:15:43Cooler_Off    13:02:14
 LRTU1_On       
00:19:19Oven_Off      01:44:12Oven_Off      07:16:10Freezer1_Off  13:03:52
 Cooler_On*     
00:19:36Cooler_On     01:48:46Ice_Off       07:17:35LRTU1_On      13:07:55
 LRTU1_Off      
00:20:45LRTU1_On      01:51:28LRTU1_On      07:21:34Freezer2_On*  13:08:24
 Oven_Off       
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00:22:17Oven_On       01:53:24Exh2_On*      07:22:12LRTU1_Off     13:09:08
 Oven_On        
00:22:54Oven_Off      01:58:14LRTU1_Off     07:35:52LRTU1_On      13:12:02
 Oven_Off       
00:25:51Oven_On       02:01:53Ice_On        07:40:29LRTU1_Off     13:12:46
 Oven_On        
00:26:28Oven_Off      02:04:32LRTU1_On      07:42:05Cooler_On     13:14:25
 Oven_Off       
00:28:11LRTU1_Off     02:13:09Cooler_On*    07:48:12Cooler_Off    13:15:15
 Oven_On        
00:28:51Freezer1_On   02:13:42LRTU1_Off     07:53:23Freezer2_Off  13:16:42
 Oven_Off       
00:29:30Oven_On       02:20:48LRTU1_On      07:53:26Freezer1_On   13:17:36
 Oven_On        
00:30:07Oven_Off      02:21:41KRTU2_Off*    07:54:00LRTU1_On      13:18:57
 Oven_Off       
00:33:07Oven_On       02:21:45Exh2_Off      07:58:41LRTU1_Off     13:19:53
 Oven_On        
00:33:44Oven_Off      02:27:58LRTU1_Off     08:01:22non identified  13:19:58
 LRTU1_On       
00:36:29LRTU1_On      02:34:36Cooler_Off    08:12:33LRTU1_On      13:21:11
 Oven_Off       
00:36:47Oven_On       02:38:24LRTU1_On      08:17:14LRTU1_Off     13:21:36
 Freezer2_On    
00:37:24Oven_Off      02:43:26LRTU1_Off     08:23:29Cooler_On     13:21:50
 Freezer1_Off   
00:40:26Oven_On       02:52:07Ice_Off       08:29:14Cooler_Off    13:22:09
 Oven_On        
00:41:03Oven_Off      02:54:16LRTU1_On      08:30:57LRTU1_On      13:23:24
 Oven_Off       
00:42:23Freezer1_Off  02:58:01Cooler_On     08:35:42LRTU1_Off     13:24:24
 Oven_On        
00:44:04Oven_On       02:59:06LRTU1_Off     08:49:13LRTU1_On      13:25:36
 Oven_Off       
00:44:07LRTU1_Off     03:04:27Cooler_Off    08:50:13Freezer1_Off  13:25:55
 LRTU1_Off      
00:44:40Oven_Off      03:10:49LRTU1_On      08:53:55LRTU1_Off     13:26:37
 Oven_On        
00:47:42Oven_On       03:13:17Freezer1_On   09:02:28Cooler_On     13:27:47
 Oven_Off       
00:48:19Oven_Off      03:15:34LRTU1_Off     09:07:22LRTU1_On      13:28:51
 Oven_On        
00:50:12LRTU1_On      03:27:45LRTU1_On      09:08:03Cooler_Off    13:29:49
 Oven_Off       
00:51:13Oven_On       03:31:19Cooler_On     09:12:03LRTU1_Off     13:30:01
 Oven_On        
00:52:45Oven_Off      03:32:26LRTU1_Off     09:12:33Freezer1_On   13:30:10
 Ice_Off        
00:54:05Oven_On       03:37:30Ice_Off*      09:25:22LRTU1_On      13:30:51
 Oven_Off       
00:54:58Oven_Off      03:38:30Freezer1_Off  09:30:07LRTU1_Off     13:31:46
 Oven_On        
00:56:27Oven_On       03:44:42LRTU1_On      09:38:50Freezer1_Off  13:32:51
 Oven_Off       
00:57:15Oven_Off      03:49:27LRTU1_Off     09:42:05Cooler_On     13:32:58
 Oven_On        
00:57:35Cooler_Off    04:00:47Freezer1_On   09:43:54LRTU1_On      13:33:08
 Oven_Off       
00:58:15LRTU1_Off     04:02:10LRTU1_On      09:47:43Cooler_Off    13:34:19
 Oven_On        
00:58:20Freezer1_On   04:06:02Freezer1_On*  09:48:35LRTU1_Off     13:35:14
 Oven_Off       
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00:58:52Oven_On       04:06:47LRTU1_Off     09:59:47Freezer1_On   13:35:25
 LRTU1_On       
00:59:39Oven_Off      04:11:49Cooler_Off    10:02:46LRTU1_On      13:36:36
 Oven_On        
01:01:21Oven_On       04:19:54LRTU1_On      10:07:23LRTU1_Off     13:37:29
 Oven_Off       
01:02:06Oven_Off      04:24:10KRTU2_Off*    10:20:13Cooler_On     13:39:03
 Oven_On        
01:03:52Oven_On       04:24:27LRTU1_Off     10:21:18LRTU1_On      13:39:47
 Oven_Off       
01:04:36Oven_Off      04:37:47LRTU1_On      10:24:07Freezer1_Off  13:41:42
 LRTU1_Off      
01:05:36LRTU1_On      04:40:42Cooler_On     10:25:43Cooler_Off    13:41:45
 Oven_On        
01:06:29Oven_On       04:42:20LRTU1_Off     10:25:47LRTU1_Off     13:42:27
 Oven_Off       
01:07:11Oven_Off      04:44:55Freezer1_On*  10:39:46LRTU1_On      13:44:33
 Oven_On        
01:09:07Oven_On       04:46:31Cooler_Off    10:44:27LRTU1_Off     13:45:14
 Oven_Off       
01:09:49Oven_Off      04:52:36LRTU1_Off*    10:44:44Freezer1_On   13:47:12
 Oven_On        
01:11:49Oven_On       04:56:07LRTU1_On      10:52:44KRTU1_On*     13:48:18
 Oven_Off       
01:12:30Oven_Off      05:00:52LRTU1_Off     10:58:02Cooler_On     13:48:28
 Oven_On        
01:12:34Cooler_On     05:07:49Freezer1_Off  10:59:15LRTU1_On      13:50:44
 LRTU1_On       
01:13:50LRTU1_Off     05:13:44LRTU1_On      11:03:33Cooler_Off    13:50:58
 Oven_Off       
01:14:35Oven_On       05:16:43Cooler_On     11:03:40LRTU1_Off     13:51:53
 Oven_On        
01:15:15Oven_Off      05:18:29LRTU1_Off     11:11:51Freezer1_Off  13:53:06
 Oven_Off       
01:17:22Oven_On       05:22:31Cooler_Off    11:20:39LRTU1_On      13:54:05non 
identified   
01:18:02Oven_Off      05:27:24Freezer1_On   11:24:40LRTU1_Off     13:55:07
 Oven_Off*      
01:19:36Cooler_Off    05:31:20LRTU1_On      11:34:45Freezer1_On   13:56:18
 Oven_On        
01:20:10Oven_On       05:36:09LRTU1_Off     11:35:20Cooler_On     13:57:06
 LRTU1_Off      
01:20:50Oven_Off      05:49:09LRTU1_On      11:40:53Cooler_Off    13:57:19
 Oven_Off       
01:20:56LRTU1_On      05:50:18Freezer1_Off  11:41:08LRTU1_On      13:58:34
 Oven_On        
01:21:33Freezer2_On   05:53:54LRTU1_Off     11:44:53LRTU1_Off     13:59:32
 Oven_Off       
01:21:51Freezer1_Off  05:54:04Cooler_On     12:02:09Freezer1_Off  14:00:51
 Oven_On        
01:23:00Oven_On       05:59:52Cooler_Off    12:04:05LRTU1_On      14:01:28
 Oven_Off       
01:23:40Oven_Off      06:07:01LRTU1_On      12:08:06LRTU1_Off     14:03:32non 
identified 
01:26:31Oven_On       06:10:09Freezer1_On  
 
* Event List by Load (* means conflict) 
 
Events Registered for Ice. 
 
 Time    Event    Time    Event    Time    Event    Time   Event  
01:48:46 Off     02:52:07 Off     12:53:36 On      13:30:10Off    
02:01:53 On      03:37:30 Off*     
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Events Registered for Cooler. 
 
 Time    Event    Time    Event    Time    Event    Time   Event  
00:05:16 On      03:04:27 Off     06:37:43 Off     09:47:43Off    
00:11:04 Off     03:31:19 On      07:02:51 Off*    10:20:13On     
00:19:36 On      04:11:49 Off     07:10:05 On      10:25:43Off    
00:57:35 Off     04:40:42 On      07:15:43 Off     10:58:02On     
01:12:34 On      04:46:31 Off     07:42:05 On      11:03:33Off    
01:19:36 Off     05:16:43 On      07:48:12 Off     11:35:20On     
01:35:37 Off*    05:22:31 Off     08:23:29 On      11:40:53Off    
01:42:00 On      05:54:04 On      08:29:14 Off     12:12:08On     
02:13:09 On*     05:59:52 Off     09:02:28 On      12:17:41Off    
02:34:36 Off     06:27:35 On      09:08:03 Off     12:49:57On     
02:58:01 On      06:31:54 On*     09:42:05 On      13:03:52On*   
 
Events Registered for Freezer1. 
 
 Time    Event    Time    Event    Time    Event    Time   Event  
00:01:45 Off*    04:06:02 On*     06:52:56 On      10:24:07Off    
00:28:51 On      04:44:55 On*     07:16:10 Off     10:44:44On     
00:42:23 Off     05:07:49 Off     07:53:26 On      11:11:51Off    
00:58:20 On      05:27:24 On      08:50:13 Off     11:34:45On     
01:21:51 Off     05:50:18 Off     09:12:33 On      12:02:09Off    
03:13:17 On      06:10:09 On      09:38:50 Off     12:23:33On     
03:38:30 Off     06:12:12 Off     09:59:47 On      13:21:50Off    
04:00:47 On      06:33:12 Off*     
 
Events Registered for Freezer2. 
 
 Time    Event    Time    Event    Time    Event    Time   Event  
01:21:33 On      07:21:34 On*     07:53:23 Off     13:21:36On    
 
Events Registered for LRTU1. 
 
 Time    Event    Time    Event    Time    Event    Time   Event 
00:06:29 On      03:15:34 Off     06:42:18 On      10:21:18On     
00:14:39 Off     03:27:45 On      06:46:55 Off     10:25:47Off   
00:20:45 On      03:32:26 Off     06:59:46 On      10:39:46On    
00:28:11 Off     03:44:42 On      07:04:16 Off     10:44:27Off  
00:36:29 On      03:49:27 Off     07:17:35 On      10:59:15On     
00:44:07 Off     04:02:10 On      07:22:12 Off     11:03:40Off    
00:50:12 On      04:06:47 Off     07:35:52 On      11:20:39On     
00:58:15 Off     04:19:54 On      07:40:29 Off     11:24:40Off    
01:05:36 On      04:24:27 Off     07:54:00 On      11:41:08On     
01:13:50 Off     04:37:47 On      07:58:41 Off     11:44:53Off    
01:20:56 On      04:42:20 Off     08:12:33 On      12:04:05On     
01:34:12 On*     04:52:36 Off*    08:17:14 Off     12:08:06Off    
01:43:42 Off     04:56:07 On      08:30:57 On      12:25:21On     
01:51:28 On      05:00:52 Off     08:35:42 Off     12:30:15Off    
01:58:14 Off     05:13:44 On      08:49:13 On      12:44:30On     
02:04:32 On      05:18:29 Off     08:53:55 Off     12:50:11Off    
02:13:42 Off     05:31:20 On      09:07:22 On      13:02:14On     
02:20:48 On      05:36:09 Off     09:12:03 Off     13:07:55Off    
02:27:58 Off     05:49:09 On      09:25:22 On      13:19:58On     
02:38:24 On      05:53:54 Off     09:30:07 Off     13:25:55Off    
02:43:26 Off     06:07:01 On      09:43:54 On      13:35:25On     
02:54:16 On      06:11:38 Off     09:48:35 Off     13:41:42Off    
02:59:06 Off     06:24:50 On      10:02:46 On      13:50:44On     
03:10:49 On      06:29:27 Off     10:07:23 Off     13:57:06Off   
 
Events Registered for LRTU2. 
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No Events Registered 
 
Events Registered for KRTU1. 
 
 Time    Event    Time    Event    Time    Event    Time   Event  
10:52:44 On*      
 
Events Registered for KRTU2. 
 
 Time    Event    Time    Event    Time    Event    Time   Event  
02:21:41 Off*    04:24:10 Off*     
 
Events Registered for KRTUs. 
 
No Events Registered 
 
Events Registered for Exh1. 
 
 Time    Event    Time    Event    Time    Event    Time   Event  
12:21:43 On*      
 
Events Registered for Exh2. 
 
 Time    Event    Time    Event    Time    Event    Time   Event  
01:53:24 On*     02:21:45 Off     12:21:46 On      12:52:31Off      
Events Registered for Oven. 
 
 Time    Event    Time    Event    Time    Event    Time   Event  
00:00:34 On      00:54:05 On      01:35:15 Off     13:30:01On     
00:01:19 Off     00:54:58 Off     01:37:35 On      13:30:51Off    
00:04:10 On      00:56:27 On      01:38:14 Off     13:31:46On     
00:04:47 Off     00:57:15 Off     01:40:34 On      13:32:51Off    
00:07:41 On      00:58:52 On      01:41:12 Off     13:32:58On     
00:08:18 Off     00:59:39 Off     01:43:34 On      13:33:08Off    
00:11:20 On      01:01:21 On      01:44:12 Off     13:34:19On    
00:11:56 Off     01:02:06 Off     12:50:27 On      13:35:14Off    
00:14:59 On      01:03:52 On      12:57:23 Off     13:36:36On     
00:15:36 Off     01:04:36 Off     12:57:46 On      13:37:29Off    
00:18:43 On      01:06:29 On      13:08:24 Off     13:39:03On     
00:19:19 Off     01:07:11 Off     13:09:08 On      13:39:47Off    
00:22:17 On      01:09:07 On      13:12:02 Off     13:41:45On     
00:22:54 Off     01:09:49 Off     13:12:46 On      13:42:27Off    
00:25:51 On      01:11:49 On      13:14:25 Off     13:44:33On     
00:26:28 Off     01:12:30 Off     13:15:15 On      13:45:14Off    
00:29:30 On      01:14:35 On      13:16:42 Off     13:47:12On     
00:30:07 Off     01:15:15 Off     13:17:36 On      13:48:18Off    
00:33:07 On      01:17:22 On      13:18:57 Off     13:48:28On     
00:33:44 Off     01:18:02 Off     13:19:53 On      13:50:58Off    
00:36:47 On      01:20:10 On      13:21:11 Off     13:51:53On     
00:37:24 Off     01:20:50 Off     13:22:09 On      13:53:06Off    
00:40:26 On      01:23:00 On      13:23:24 Off     13:55:07Off*   
00:41:03 Off     01:23:40 Off     13:24:24 On      13:56:18On     
00:44:04 On      01:25:51 On      13:25:36 Off     13:57:19Off    
00:44:40 Off     01:26:31 Off     13:26:37 On      13:58:34On     
00:47:42 On      01:29:24 Off*    13:27:47 Off     13:59:32Off    
00:48:19 Off     01:31:40 On      13:28:51 On      14:00:51On     
00:51:13 On      01:32:18 Off     13:29:49 Off     14:01:28Off    
00:52:45 Off     01:34:35 On       
 
Events Registered for non identified. 
 
 Time    Event    Time    Event    Time    Event    Time   Event  
01:28:45        08:01:22         13:54:05        14:03:32     
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Appendix B Database Clusters Generation 

B.1  Manual Cluster Parameter Computation 

This section describes the method used to obtain the load’s cluster information from the NILM 
data obtained during normal operation of the system. The process can be summarized in the 
following steps: 

1) Event Detection. The Event Detection module is run on NILM power data to the events 
information, that is the times of the events and their corresponding real and reactive 
power changes. 

2) Event Classification. The events obtained are manually classified as belonging to the 
different loads in the building using the parallel metering data. A Matlab® function 
displays the NILM and C180 data on a single window and allows the user to select the 
events believed to belong to the load of interest. Figure B-1 shows an example of the 
function’s output while selecting the cooler events from a day data. Once the selection of 
the events, the function adds the position of the selected events to the Event Matrix 
generated by the Event Detection Module.   
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Figure B-1 Cooler Event Selection. 
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3) Cluster Selection. Using the information obtained from the event selection, the events 
selected are plotted in the complex power change plane. Another Matlab® function is 
used to manually group the points into clusters. The user defines rectangles containing 
the desired cluster points (Figure B-2) using the PC mouse.  
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Figure B-2 Manual Clustering of Cooler Events. 
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Figure B-3 Clusters Resulting from Manual Selection. 

Once the user delimits the clusters, the function then computes the cluster statistical parameters 
(means, standard deviations and cluster angle) and plots the corresponding cluster ellipses 
(Figure B-3). 
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